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Propagation Velocity and Space-Time Correlation
of Perturbations in Turbulent Channel Flow

By John Kimt &: Fazle Hussain_

A database obtained from direct numerical simulation of a turbulent channel flow is

analyzed to extract the propagation velocity V of velocity, vorticity and pressure fluctua-

tions from their space-time correlations. A surprising result is that V is approximately the

same as the local mean velocity for most of the channel, except for the near-wall region.

For y+ _< 15, V is virtually constant, implying that perturbations of all flow variables

propagate llke waves near the wall. In this region V is 55% of the centerline velocity Uc

for velocity and vorticity perturbations and 75% of Uc for pressure perturbations. Scale-

dependence of V is also examined by analyzing the bandpass-filtered flow fields. This

paper contains comprehensive documentation the propagation velocities and space-time

correlation data, which should prove useful in the evaluation of Taylor's hypothesis. An

attempt has been made to explain some of the data in terms of our current understanding

of organized structures, although not all of the data can be explained this way.

1. Introduction

The propagation velocity of a perturbation in turbulent shear flow is of fundamental

interest irrespective of whether turbulence is viewed as a stochastic flow field, as an as-

semblage of coherent structures, or as a superposition of traveling waves. From any of

these viewpoints, the various flow properties and their different scales are not expected to

propagate at the speed of the mean flow, nor are they always expected to propagate at

identical speeds.

Recognizing what now appears to be an well-accepted notion that organized events or

"coherent structures" play a dominant role in transport phenomena in turbulent flows,

it is tempting to interpret V in terms of the dynamics of advecting coherent structures.

[A variety of coherent structures have been proposed by various authors for turbulent

boundary layers (for example, Kline et al., 1967; Willmarth and Tu, 1967; Often and Kline,

1975; Perry and Chong, 1982; Wallace, 1985; Acarlar and Smith, 1987; Utami and Uno,

1987). For a recent survey, see Robinson (1991).]Such attempts, unfortunately, have to be

relegated for now to a conceptual exercise, as the measurement required for interpretation

of V in terms of coherent structures is prohibitive. On an instantaneous basis, V varies

from one structure to the next; even for a given structure, V can vary considerably during

its advection; different parts of a 3D structure can advect with different V; there is a

variation in V across a shear flow; a flow can have a variety of coherent structures even
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at a fixed station, and coherent structures can vary from one region to another in the

same flow (see, for example, Hussain, 1986). Thus statistical measures of V are not only

unavoidable, but also preferable as knowledge of instantaneous V during the trajectory of

a structure will serve no useful purpose. Because of the statistical nature of the data, it is

very difficult to interpret them in terms of instantaneous structure dynamics.

In turbulence, disturbances can be considered as superpositions of traveling waves. Their

propagation may depend strongly on wavenumbers, and waves can grow and decay. In this

case, several propagation velocities such as phase, group, signal and energy velocities can

be defined. In general, these velocities are all different (Brillouin, 1960), especially in a

frequency region where the frequency dependence (i.e. dispersion) is high and the growth

or decay rate is high. Here, we are considering signal propagation velocity. The signal

velocity is the velocity with which the main portion of signal amplitude travels, and it can

be measured by the peak location of space-time cross correlation in an instantaneous field

(for various definitions of propagation velocities deduced from velocity correlations, see

Hussain and Clark, 1981). In this paper, we use propagation velocity as the signal velocity

on a plane parallel to the channel wall.

Knowledge of propagation velocity has some practical applications. In aeroacoustics one

needs to know the timescale of the most dominant structures that produce aerodynamic

sound as well as the propagation velocity of the source. Interpretation of experimental

signals or data in turbulent flows typically requires the application of Taylor's hypothesis

because of problems associated with direct measurement of spatial distributions of flow

variables. The hypothesis relates spatial and temporal distributions of flow variables by

assuming frozen turbulence: a perturbation at (x, t) is treated as the same at (x-Vt, t = 0),

where V is the propagation velocity of the perturbation. In spite of its widespread use (as

well as equally widespread warnings against its use), there has been no rigorous test of

Taylor's hypothesis itself, even though the estimated error appears to be substantial at the

fine scales (Lin, 1953; Fisher and Davies, 1964; Lumley, 1965; Champagne, 1978; Piomelli

et al., 1989). For example, Lin (1953) showed that Taylor's hypothesis is valid only if

the turbulence intensity is low, viscous forces are negligible and the mean shear is small,

thus invalidating the use of Taylor's hypothesis for most shear flows. In particular, he

also showed that the error in Taylor's hypothesis is unacceptably large for the large scales

in turbulent shear flow. Zaman and Hussain (1981) performed a direct evaluation of the

hypothesis by educing the structures (i.e. measuring spatial details of structure properties)

in an excited jet through phase-locked measurements using a reference signal without

using Taylor's hypothesis, and then measuring these spatial distributions by invoking the

hypothesis. They found that for the large-scale structures in a jet the error introduced by

the hypothesis was surprisingly low when a single value for V equal to the advection velocity

of the structure center was used everywhere across the transverse width of the shear region,

except in situations where strong interactions like pairing or tearing occurred. They also

showed that the typical use of either the local mean velocity or the instantaneous velocity

for V produced unacceptably large errors.

Propagation velocities have been measured in a number of turbulent flows: e.g., for veloc-

ity fields in grid turbulence (Comte-Bellot and Corrsin, 1971), velocity fields in boundary
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layers (Bradshaw, 1967; Bullock et al., 1978; Heidrick et al., t977), wall pressure in turbu-

lent boundary layers (Willmarth and Wooldridge, 1962; Dinkelacker et al., i977; Schewe,

1983) and velocity fields in jets (Wills, 1964; Clark, 1979; Goldschmidt et al., 1981). These

studies do not necessarily produce consistent results as they suffer from a number of con-

straints. For example, correlation measurements with a probe separation in the streamwise

direction are affected by probe interference (except, of course, in non-intrusive techniques

such as LDA). Such measurements have two additional constraints. They provide inte-

gral measures of propagation velocities over all scales, but the values have been found to

vary significantly depending on the probe separations and time delays employed due to

scale-dependence of the propagation velocity. Scale-dependent propagation velocity has

been measured by Wills (1964) and Hussain and Clark (1981) by the complete Fourier

transformation of space-time correlations of velocity perturbations. Direct measurement

of scale-dependent propagation velocity has been attempted by narrow-band filtered data.

This approach unfortunately suffers from the additional limitation that length scale dis-

crimination is not satisfactory. For example, it is not possible to distinguish a large scale

eddy moving rapidly from a smaller scale eddy moving slowly. When time delay is used

along with a large spatial separation, the measurements are also biased towards the largest

scales as they have longer lifetimes and dominate the correlation while the small scales de-

cay faster because of higher dissipation.

There has been considerable confusion regarding the propagation velocity of pressure, Vp.

To our knowledge, this has not been measured within a flow. Furthermore, most of surface-

pressure measurements appear to be contaminated by sensor resolution (Willmarth and

Wooldridge, 1962; Schewe, 1983). The propagation of pressure perturbations also has some

ambiguity because pressure at a point is not truly a local property but, being the solution

of the Poisson equation, is also affected by turbulent motions away from that point, i.e.,

everywhere within a flow domain. As such, propagation of pressure in a turbulent flow is

hard to interpret. Also, one can view the instantaneous pressure as a superposition of rapid

and slow pressures, being respectively associated with'linear and nonlinear source terms in

the Poisson equation. It would thus be interesting to examine if the propagation velocities

of these two components of pressure are significantly different. If they are, the difference

needs to be explained in terms of the turbulence structure. Furthermore, since a turbulent

flow field consists of a superposition of rotational and irrotational flow fluctuations, there

is no a priori reason to expect that velocity and vorticity perturbations should travel at

the same speed.

This paper provides the first detailed information on propagation of velocity, vorticity

and pressure perturbations in a canonical turbulent shear flow. Experimental collection

of similar data has neither been achieved nor is likely to be achieved in the foreseeable

future because of intrinsic limitations of the state-of-the-art measurement technology. The

database used in the present work was obtained from a direct numerical simulation of

turbulent channel flow by Kim, Moin and Moser (1987). The availability of the complete

three-dimensional flow field as a function of time makes the use of such a database par-

ticularly attractive for the study of the propagation of perturbations in turbulent flows,

which requires complete information of space-time correlations. Detailed comparisons with



4

existing experimental results have established the physical realism and accuracy of the com-

puted flow fields. Many of the results presented in this paper include new information that

cannot be validated directly because of the absence of experimental data, unlike most of

the statistics and turbulence structures for the corresponding velocity field. However, all

the statistics presented in the present work are obtained from study of the same veloc-

ity fields whose validity has been thoroughly examined, and there is little doubt that the

information presented here should be valid as well.

In this paper, u, v and w denote the velocity components in the streamwise (x), trans-

verse (y) and spanwise (z) directions, respectively, p denotes pressure, and w,,wy and

w, denote the vorticity components in x, y and z directions, respectively. We denote the

propagation velocities for these variables by Vt,, Vv, Vw, Vp, V,_, , V,_, , and V,,,,.

2. Review of the Database and Determination of Propagation velocity

A direct simulation of fully developed turbulent channel flow has been performed. The

numerical algorithm and other details employed to generate the database can be found

in Kim et al. (1987). A spectral method using the Fourier series in the streamwise and

spanwise directions and a Chebychev polynomial expansion in the normal direction was

used to represent the spatial distribution. Time advancement was carried out by a low-

storage third-order Runge-Kutta scheme for the nonlinear terms and by the Crank-Nicolson

scheme for the viscous terms. The computation was carried out using 128 × 129 × 128

spectral modes in x, y and z. The Reynolds number based on the centerline velocity
and the channel half-width was about 3300, and the channel half-width in wall units is

about 180. The collocation grid spacings in the streamwise and spanwise directions were

Ax + _ 12 and Az + -- 4 in wall units, where the superscript + indicates a nondimensional

quantity scaled by the wall variables, e.g., y+ = yu,./v, where _, is the kinematic viscosity

and ur = X/_w/P is the friction velocity. A nonuniform mesh was used in the normal

direction. The first mesh point away from the wall was at y+ "_ 0.05, and the maximum

spacing (at the centerline of the channel) was 4.4 wall units.

Once the velocity field reached the statistical steady state, about 70 instantaneous ve-

locity and pressure fields (each field contains about 8 × l0 s words) taken at a regular time

interval (At + = 3) were stored on magnetic tapes for future analyses, from which the

present results were obtained. The reader is referred to Kim et al. (1987) and Kim (1989)

for further details on the various turbulence statistics obtained from this calculation.

The space-time correlations, for example,

(1)

are used to determine propagation velocities. There are several ways to determine propa-

gation velocity using the space-time correlations (see Wills, 1964 and Hussain and Clark,,

1981, for example). In the present work, we used the propagation velocity determined by

(2)
At
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Here, Ax,,_a, is the streamwise separation for which Rii(Ax, y, At) is maximum for a given

At. V_ determined in this way will be a function of the At used in equation (1). At + ----18

was used for the present work unless stated otherwise. The particular choice of At and

effect of different values of At are discussed in the Appendix.

3. Results and Discussion

In this section we present the main results obtained by examining the channel database.

In some cases, we are unable to explain some aspects of the presented results. Nevertheless,

we are presenting some of these results without further discussion as no meaningful discus-

sion appears possible with the currently available incomplete knowledge about turbulence

structures in a channel or a boundary layer. We do this for archival purposes and in the

hope that some of these results might prove useful to certain readers.

3.1 Propagation Velocity of Perturbation_

The propagation velocities for the velocity and pressure perturbations across the channel

are shown in figure 1, and those for vorticity are shown in figure 2. The same data are

shown in both global and wall coordinates. It is rather surprising that for most of the

outer part of the channel, say y > 0.16, where _ is the channel half-width, the propagation

velocities are essentially identical with the local mean velocity U(y), being only slightly

lower than U(y). This implies that the turbulence structures contributing to the average

propagation velocity move away from the wall so that the propagation velocity is lower

than the local average.

Near the wall, however, all propagation velocities exceed U(y), becoming constant

(0.55Uc, where Uc is the mean velocity at the centerline of the channel) for y+ < 10.

This constant value is about the same for all perturbations except pressure. Vp is notice-

ably higher, 0.75 Uc. Since perturbations at the wall are induced by advecting dominant

structures away from the wall, propagation velocity can be significant at the wall, even

though the flow velocity is zero there. The propagation velocities for the three velocity

components and three vorticity components are neai:ty equal for most of the channel, the

largest discrepancy occurring around y+ ,,_ 15.

The propagation velocity for pressure varies the least across the channel -- by less than

20% of Uc -- consistent with the fact that pressure is a global variable. Kim (1989) exam-

ined the source terms in the Poisson equation for pressure in order to assess the relative

importance of each term and to determine the global character of the pressure fluctuations.

Of the seven source terms (one linear term containing the mean shear and six nonlinear

terms), it was found that (Ov/Oz)(Ow/Oy) was the largest. Note that (Ov/Oz)(Ow/Oy) is

large at the core of streamwise vortices, and the mean square value of (Ov/Oz)(Ow/Oy)

has a local peak at about y+ = 20, where the centers of the streamwise vortices were lo-

cated on the average (Kim et al., 1987). The pressure fluctuations were therefore strongly

influenced by the presence of streamwise vortices in the buffer layer. It is then not too

surprising that Vp near the wall is approximately equal to V,_, at about y+ = 20, and it

varies much less across the channel ..........

To obtain further insight into the coherence of propagating perturbations, streamwise

correlations of various perturbations with a fixed time delay, R_u(x), R_(x), Rww(x)

and Rpp(x), were studied as functions of streamwise separation for y+ _ 5 (y/5 _- 0.03),
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50(0.28), 100(0.57),180(1.0), as shown in figure 3. The corresponding correlation functions

for wx, w v and wz are shown in figure 4 for y+ = 5 and 50 only. Note that the correlations

are normalized such that Rii(z = 0,t = 0) equals 1. Near the wall, Rpp(x) peaks at

the largest x-separation, consistent with the propagation velocity data shown in figure 1.

There is a slight asymmetry in Rpp(x), the downstream front being slightly sharper. More

interesting is the fact that Rpp, unlike all other correlations, reaches large negative values in

the near-wall region. Similar negative pressure correlation has been reported by Hodgson

(1971). This would suggest that pressure is more spatially distinct and oscillatory than

the other variables. The Rpp(Ax) data are consistent with the dominant structure educed

by Jeong (1992) near the wall: namely, tilted nearly streamwise vortices with alternating

signs of vorticity (figure 5). Along the line AD in figure 5, the structure induced wall

pressure is oscillating in sign in x.

Further away from the wall, there is no distinction between R,_,Rww and Rpp, while

R,,,, has a much higher peak and extends for a longer x-region than the other variables,

suggesting that longitudinal velocity perturbations are the most distinct and dominant fea-

tures of boundary-layer turbulence. Near the wail R_,w, has the highest peak and R_,z_,z,

the lowest. Differences among R_,_z,R_,_ , and R_,,,_,, however, disappear away from

the wall, implying that vorticity fluctuations (small-scale motions) become statistically

more isotropic in the outer region (Antonia et al., 1991). The similarity between Ruu and

R_,_, near the wall is because wz is essentially due to Ou/c3y __ u/y in the wall region.

The dominance of R_,_, near the wall disappears away from the wall. It is worth noting

that w_ has the least longitudinal scale. Although many investigators had proposed earlier

an eddy structure that consisted of a pair of counter-rotating vortices that are elongated

in the streamwise direction and are parallel to the wall (Blackwelder, 1978; Blackwelder

and Eckelmann, 1979), Moin and Kim (1985) disputed this model based on the results

obtained from their simulation. Kim and Moin (1986) contended that streamwise vortices

convecting downstream without losing their coherence for long distance (over 1000 v/ur)

had given the false impression that the streamwise extent of these vortices was rather long.

The present results support the notion that the streamwise vortices are relatively short

in the streamwise direction but temporally persistent. The dominant and largest scale of

Ruu, of course, is consistent with the streaks observed by Kline et al. (1967) and others.

3._ Transverse Correlations of Perturbation_

To examine the transverse (inhomogeneous direction) characteristics of turbulence struc-

ture in the channel, transverse correlation distributions with zero time delay, for example,

= (3)

where y_ is the reference transverse location, have been computed. R=_(y_, y), R_(y_, y),

Rw_(y_, y) and Rpp(y_, y) for y_ values corresponding to y+ " 5, 50, 100 and 180 are

shown in figures 6(a)-(d). In addition, Rpp(y,y_) for y_ = 0 is given in figure 6(e). The

corresponding R,,,,,,, R_,,_ and R,_,_,, correlations for y_ = 0.03_5 (y+ " 5) and y_ =

(y+ __ 180) are shown in figure 7. As is clear from figures 6(a,b), the pressure field is fairly

well correlated over a large width of the channel. This is consistent with the high value
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of Vp near the wall, if one assumes that pressure at the wall is induced by the structures

farther away from the wall. Unlike vorticity or velocity components, there is a signifi-

cant correlation between pressure at the wall and pressure at the channel centerline. For

instance, at Yr = 0.036, velocity correlation drops to 0 at y = 0.2_, but the pressure cor-

relation decreases gradually, dropping to only 0.3 at y __ 0.5_, then to 0.15 at the channel

center (y = 6). The global dependence of quantities associated with pressure has been

reported by Kim (1989), who presented pressure and pressure-strain correlations in terms

of a Green's function. Because of the nonlocal nature of the pressure fluctuations, the

contributions to pressure-strain terms were also nonlocal, especially away from the wall re-

gion, raising serious doubt as to whether one can model them in terms of local variables as

is currently done. Ru,,, R._, and R_,_,, drop monotonically while R_,w, R,_,_,_ and R,o_,

show negative excursions in their correlations. These negative values are consistent with

quasi-streamwise vortices as the dominant structure (fig. 5). The negative value of R_,,o,

results from the no-slip boundary condition at the wall, where a quasi-streamwise vortex

induces streamwise vorticity of the opposite sign adjacent to the wall. A quasi-streamwise

vortex also induces w-velocity with negative Rww(yr, y) if yr and y are located across the

vortex center [fig. 8(a)]. Since the streamwise vortical structure creates "uv2" and "uv4"

events on its sides, the associated streamwise velocity perturbation and its y-derivative

Ou/Oy _ wz will have oscillations in the y direction [fig. 8(b)]. These explanations are

consistent with previous observations made by other investigators: Moin and Kim (1985)

showed the negative excursions in Rww(y) are caused by horseshoe-like vortices; the inter-

hal shear-layer structures studied by Jimenez et al. (1987) and Johansson et al. (1987,

1991) produced the negative excursion in R_,_(y) and R_,_,,(y). The peak value of the

negative correlations is lower toward the channel center, suggesting that structures are

less clearly defined there. The correlation length increases continuously until the channel

center; those of p and v are the largest, and that of w is the smallest.

3.3 Scale-Dependence of Propagation Velocity

In order to determine the scale-dependence of pr6pagation velocities, the flow field was

divided into eight equi-spaced streamwise wavenumber (kx) ranges. This is approximately

equivalent to bandpass filtering temporal signatures in an experiment. The time delay

(At + - 18) turned out to be too large for large wavenumbers. The time scales associated

with small-scale motions (corresponding to large wavenumbers) are small, and the maxi-

mum correlations for large wavenumbers with At + -- 18 becomes too small to accurately

determine the location of the peak correlations. Hence, for this particular study, At + =

3 was used instead. All the results presented in the present subsection are normalized by

the propagation velocity for all scales (i.e., no bandpass filtering) using At + = 3.

Except near the wall, no noticeable kx-dependence of the propagation velocities was

found. As an example, these variations are shown in figure 9. Contrary to the expectation

that larger scales have higher propagation speeds, the data show the kz-dependence to be

marginal. Near the wall, the largest scales of u and w, move slower while smaller scales of

u and wz move faster, although the variation is rather small. Beyond y+ -" 12, there is no

noticeable kx-dependence.

The dependence of V on the spanwise scale is similarly determined by dividing the

flow field into eight equi-spaced spanwise wavenumber (k,) ranges. The kz-dependence
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Table 1

Scale Dependence of Propagation Velocity

Scales kz kz Vg. Vg.

Large in z, large in z Small Small Large Small

Large in z, small in z Small Large Small Small

Small in z, large in z Large Small Large Large

Small in z, small in z Large Large Small Large

of V is much more dramatic (fig. 10). The kz-dependence is monotonic near the wall;

there is a two-fold increase in V with an eight-fold increase in scale. Note that the scale-

dependence seems to be fairly similar for all the variables except for pressure, which shows

a rather strong scale dependence (at y+ = 12). The kz-dependence decreases away from

the wall, being negligible for y+ >__50 (not shown here). Note also that even though Vp

is the largest near the wall, Vp(k,) shows the lowest values because it is normalized by

the corresponding propagation velocity for all scales. The strong k,-dependence near the

wall is indeed intriguing, but perhaps can be explained in terms of the small-scale motion

produced near the wall. Assuming that small-scale (random) turbulence produced near

the wall is advected passively, the propagation velocity of the small scales is lower than

that of the (large-scale) streaks, because the propagation of streaks is controlled by the

structures away from the wall, which move faster (fig. 11). This view is consistent with

the streak-formation mechanism proposed by Moin and Kim (1985), in which the streaks

are produced by streamwise vortices convecting at a higher velocity than the local mean

velocity. "

The above scenario and the k,-dependence have further implications. If we consider

propagation velocity as the group velocity Vg of a perturbation wave, the value of Vg in the

streamwise direction is essentially a function of k, only; i.e., Vg, = V(-alk, l + b) = f(kz)

where V is the propagation velocity of all scales, a = 0.01 and b = 1.1 (fig. 10). Here,

Ik,I indicates a symmetry in z. Since Vu= = Of_/Okz = f(kz), where f_ is the frequency,

f_ ~ k,f(kz). Now the group velocity in the spanwise direction is Va= = Off�Ok, =

kxf'(k,) = -Fakx. This implies that the large-scale streaks (small k,) do not wander

significantly in the spanwise direction, but small scales do presumably due to the induced

motion by the streamwise vortices (fig. 11). The k, and k, dependencies of propagation

velocities Vg, and Vg, are given in Table 1. The weak dependence of Vg, on k, results

from the k,-dependence; the energy spectra in the streamwise direction, from which Vg, is

computed, are Summed over all kz, and the spectra for small k, are likely to be influenced

more by small k,, resulting in the weak k,-dependence.

3.4 Space-Time Correlations

Turbulent perturbations are not passively advected but undergo evolutionary changes.
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Thus aperturbation field changesits size,deformsin shape,aswell asmovesin the stream-
wise, transverseand spanwisedirections. Consequently,a more complete understanding

-of the propagation of a perturbation can be achieved by further examining space-time
correlations with streamwiseand transverse separations. These provide not only some
perceptions of the propagation of the perturbation field, but also their evolution in space
and time. In the following, we first discusscorrelation in (x, t)-space and then in the (x, y)-

plane with a time delay. These figures represent a significant amount of information on

turbulence structure in channel flow even though we are not necessarily able to interpret

them completely now. These, included for archival purposes and for modeling efforts by

others, provide vivid depictions of the perturbation fields and their propagation.

Contours of Rpp( A x , At), R_ (A z , At) and R,_ z_z ( A z , At) at y = 0 are shown in fig-

ure 12, and contours of R_(Ax, At), Rw(Ax,At), Rww(Az, At), Rpp(Ax, At),

R,_,_ (Az, At), R,,y,_ (Ax, At), and R_, z_z (Ax, At) at y+ = 12 are shown in figure 13.

The figures show that all perturbations considered here propagate in a nondispersive man-

ner (consistent with k,- independence discussed earlier); i.e., the width of the constant

contour levels in the spatial direction does not spread with time, and the propagation ve-

locities do not appear to be too dependent on the time delay as indicated by the alignment

of the ridges of the maximum correlations with a constant slope line. The contours also

show that the correlations associated with the streamwise velocity (Ru=, in particular, and

to some extent R,,,,_, ) have larger correlation lengths both in time and space. Contours

for Rpp and R,,,,_z show shorter correlation lengths in the streamwise direction (consistent

with shorter integral length scales of p and wx compared with that of u). Note also that

Rpp has negative contours near the wall unlike the other correlations.

The correlations R==, R_v, Rww, Rpp, R_z_., R_,_, and R,,,z,,, with zero time delay

in the (x, y)-plane with the reference probe located at y+ = 12 and y+ = 100 are shown

in figures 14 and 15. Note that all the correlations are normalized by their local variance

[eqn. (3)], and they have their peaks at the reference location. These contours, except

those for p and v, show quite well that the dominantstructures are inclined at an angle to

the wall. The contours for R,_.,,,_ have a strong resemblance to the shear-layer structure

studied by Jimenez et al. (1987) and Johansson et al. (1987, 1991). The implication is

that these shear layers are so dominant that their influence is strong even on the long-time

averaged statistics such as the two-point correlations. Johansson et al. (1991) reported

that the production for turbulent kinetic energy per unit volume associated with the shear

layers was about three times larger than that of the rest of the flow.

Pressure is well correlated in the transverse direction; so is v, but its streamwise extent

is considerably shorter. Pressure correlation extends transversely, essentially normal to the

wall. The long transverse correlation of p again suggests that p is not a local flow variable

but bears the footprint of flow structures in the channel core (see Kim, 1989). The pressure

difference near the wall across the channel is marginal, even though a streamwise vortical

structure is present: e.g., Op+ /Oy + = -Ow+ /Oz + + Ow+ /Ox + _ -Ow+ /Oz + "_ 0.4/20 =

0.02 << 1 in wall units, considering a quasi-streamwise structure located in the buffer

region (Kim et al., 1987). That is, the boundary condition for pressure at the wall behaves

essentially as a mirror (Kraichnan, 1956). It has also been shown by Kim (1989) that

the contribution from the inhomogeneous boundary condition and homogeneous equation
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for the Stokes pressure is negligibly small. The mirror boundary condition on both walls

in the channel creates an infinite number of sources aligned in the transverse direction.

These image sources for pressure are responsible for the surprisingly high correlation in

the transverse direction, even extending from the wall to the channel centerline. In the

boundary layer where there is only one wall, pressure is not likely to behave in this manner.

The correlation of u extends over a much bigger area, consistent with the long streaky

structures observed in flow visualization, but the length scales for the organized vorticity

fields are rather short. This is also a strong argument against basing detection and eduction

schemes on the u-signal only. If coherent structures are defined in terms of the vorticity

field (Hussain, 1980), then the detection and eduction of coherent structures must be based

on vorticity. The u-signal alone is insensitive to the details of the organized structures

characterized by coherent vorticity.

Further away from the wall (fig. 15) all the correlations decrease rapidly except for R,,,.

Toward the center of the channel (not shown here), w, and wz correlations decrease in area

and strength, while w_ correlations continue to be dominant. This is consistent with the

tips of hairpin structures being more aligned with y-axis at larger y.

Correlations at nonzero time delay, Rii(Ax, y+ = 12, At + = 18), are shown in figure 16.

The impression just described regarding propagation of velocity, pressure and vorticity is

confirmed. The pressure field propagates downstream while remaining virtually aligned in

the normal direction; the velocity and vorticity correlations suggest inclined flow structures,

with the near-wall part trailing the part in the channel centerline. The significantly higher

correlations of u, compared to those of other variables, are consistent with the persistence

of near-wall streaks.

3.5 Rapid and Slow Pressure

The profile of the propagation speed as well as correlation contours for pressure are

noticeably different from those for other variables. In order to obtain further understanding

of this behavior, it was felt worthwhile to examine correlations and propagation velocities

corresponding to the rapid (linear) and slow (nonlinear) pressure separately. Figure 17

shows the propagation velocity profiles for the rapid (Pr), slow (p,) and total (pt) pressure.

Vp, is higher than Vp, near the wall while the reverse holds in the center of the channel,

although the difference is rather small.

Figure 18 shows correlations in the (x, y)-plane ofpr and ps for At + = 18. It is clear that

the correlation of pr extends in the transverse direction much more than that of ps, while

correlation of ps shows inclined structure unlike that of p_. Contours of rapid pressure have

negative parts, but those for slow pressure do not, indicating that the negative correlation

associated with the total pressure is due to the rapid pressure. The conditionally averaged

pressure fluctuations associated with the near-wall shear layers (Johansson et al., 1991) had

a large positive peak surrounded by negative pressure lobes. Examination of our results

suggest that the positive peak is due to the slow pressure while the negative lobes are due

to the rapid pressure. Although the rapid and slow pressures play distinct roles, there

appears to be no striking difference between their behavior as far as propagation speeds

are concerned. We also note that the location of peak correlation moves away from the

wall in time, suggesting that the source of pressure (i.e., structure) moves in time away

from the wall.
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4. Summary and Concluding Remarks

There is a dearth of data on propagation velocity, primarily because of the enormous

experimental effort involved as well as the inherent experimental constraints. The direct

numerical simulation data afford the opportunity to determine propagation velocities of

pressure, velocity, vorticity and velocity gradient perturbations and their space-time cor-

relations with more accuracy than is likely in experiments.

Propagation velocities are studied by analyzing a database obtained from a well-tested

numerical simulation of channel flow. Contrary to the widespread belief, for most of the

channel, the propagation velocities for velocity, pressure and vorticity are approximately

equal to the local mean velocity. In the wall region, the propagation velocities approach

a constant value (0.55Uc) except that of pressure, which attains a higher constant value

(0.75Uc). The distinctly different value for pressure, though surprising, is consistent with

the fact that pressure is a nonlocal variable. Propagation of pressure perturbations is

strongly influenced by the streamwise vortices in the buffer layer and thus varies little

across the channel.

Scale-dependence of the propagation velocity is examined by analyzing flow fields ob-

tained by bandpass filtering (in wave space) the original fields. It is shown that, away

from the wall, the propagation velocity is independent of wavenumbers. In the wall region,

there is weak dependence on the streamwise scale but a rather strong dependence on the

spanwise scale. We have attempted to explain this difference in terms of the dynamics of

fine-scale turbulence near the wall and (large-scale) streaks. The explanation seems to lie
with the fact that the near-wall flow consists of structures with distinct spanwise scales

which persist, while there is no such persistence of streamwise scales.

Dependence of the propagation speed on the time delay is also examined. The variation

is the largest for pressure in the wall region. The difference between Vp and others for

dependencies on At + is somewhat surprising in view of the fact that pressure is supposed

to behave like a global property, being largely dominated by the outer flow. In that case,

pressure near the wall should have longer time scales than velocity; thus, Vp should be

relatively insensitive to At +. Of course, we also know from experimental data (Emmer-

ling, 1973) and from a comparison of u and p contours at y+ = 5 (fig. 14) that pressure

indeed has smaller scales than velocity in the streamwise direction, though not smaller

than vorticity. Pressure correlation will thus be expected to be dependent on At +. The

interesting feature of the pressure correlation is that it is compact in the streamwise di-

rection but extended in the transverse direction. This is quite a contrast with the velocity

and vorticity fields, particularly u.

Many features observed from the space-time correlations presented in the present pa-

per resemble those dominant structures obtained either from a single realization or a

conditionally-averaged field. This suggests, in turn, that those structures are so dominant

that they leave their imprints even in the time-averaged statistics. This is contrary to

the common belief that time-averaged statistics do not contain any structural informa-

tion. Proper orthogonal decomposition (Lumley, 1981; Moin and Moser, 1989) and linear

stochastic estimation (Adrian and Moin, 1988) are good examples which illustrate that one

can extract much information on organized structures from such time-averaged statistics

if one makes judicious choice of available statistical analyses.
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Hussainet al. (1987) studied the effect of the propagation velocity on the error asso-
ciated with the Taylor's hypothesis in the channel flow. The local mean velocity, local
instantaneousvelocity and a filtered velocity were usedas the propagation velocity. They
found that the error was rather small for all casesexcept in the near-wall region. The
present results indicate that the propagation velocity in the wall region deviates signifi-
cantly from the mean velocity. It should be interesting to seeif the useof the constant
propagation velocity found in the present study will reducethe errors. One can also de-
termine the velocity V(x, t) directly from the numerical simulation such that Taylor's

hypothesis 0u/0t + V(x, t) • Vu -- 0 is satisfied. It would be interesting to examine how

mean values < V(x, t) > compare with the propagation velocities reported in this paper.

We are grateful to Mr. Jinhee Jeong of University of Houston for allowing us to use

some unpublished data, and for the assistance during the course of this work. Drs. Robert

Moser and Michael Rogers of NASA Ames Research Center made many helpful comments

on a draft of this paper.
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APPENDIX : Dependence of Propagation Velocity on Time Delay

The computed (or measured) propagation velocity, determined as explained in section 2,

would depend on the value of the time delay used, because the time scMes associated with

different scales of motions are different. For instance, time scales associated with small

eddies would be much smaller than those associated with large eddies, and if a large time

delay is used, only the propagation of large scale motions would be reflected. Furthermore,

with a large time delay, the maximum value of the correlation function becomes too small

and less peaky. This would result in a large error in determining the propagation velocity.

On the other hand, if too small a time delay were used, only small-scale motions would

be reflected in the propagation velocity. Also, with both Ax,_a_ and At being small, a

large error could result. This is particularly critical in analyzing the computed database,

because one has to interpolate between grid points to determine Axmax. In the present

study we interpolate spectrally to minimize the error associated with the interpolation

procedure. The interpolation error can become significant, nonetheless, if Azma_ is too

small.

At + = 18 was chosen because this time delay not only gave reasonable peak values

for all quantities considered (varying from 0.4 to 0.8 depending on the perturbation and

y-location) but also gave Axma_ larger than 10 grid spacings in the streamwise direc-

tion, corresponding to a maximum possible interpolation error less than 10%. The actual

interpolation error, however, is negligible because of the spectral interpolation used.

To examine the dependency of the computed propagation velocity on the time delay,

three different time delays, At + = 3, 18 and 27, were tried. Except for very close to the

wall (y+ < 12), no variation of the propagation velocities was found within this range of

At + . Close to the wall, however, the dependence on At + was striking, but not unlike that

found by Willmarth and Wooldridge (1962) and Corcos (1964). For example, at y+ = 5,

between At + = 3 and 27, Vu changed by about 5% while Vp changed by about 18%. For

the computation of the overall propagation velocities in this paper, we have used At + = 18.

However, for the bandpass-filtered propagation velocities (see section 3.3), At + = 18 was

found to be too large for high wavenumber ranges; for these we used At + = 3 for all wave

numbers.
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4O

y/_

,5

-.5

-1.0

I

(g)

, , , I , " ' ] • I I J I i l

-1200 -800 --400 -200

I I I I

, j , I , , , ! , , , I , . , I
2O0 400 800 1200

_LX "1"

Figure 15. Concluded. (g) .R_,_, (Az, y).



41

y/(5

1 I

(a)

0

-1

I I

, , 1 , ,_

I I

y/_

-1

1

(b)

0

I

I i

! J I I l ! ! , ,

-400 -200 0

! !

, I

200 400

1 1 I

Figure 16. Two-point correlations at nonzero time delay (At + -- 18) in the (x, y)-plane

for y+ _ 12: (a) R_,,(Ax, y); (b) R,,,,(Ax, y).



42

yl(5 0

y/_ o

1
(c)

-1

(d)

| I

I I I I ! I

| I i I 1 i I •

-40O -2O0 0

1 7"
//

t r

', : .:',/

-".-1

I I •

/

I
!

I

n

!

/
/r

|1 I
4O0

I I I

Figure 16. Continued. (c) R,_,_(Az,V); (d) RTw(Az, y).



y/_ 0

-1

I

y18 o

-1

I
(e)

L 1 I i I i I I i I I

I I
(l)

/
I I I I I I I , I /'_ f

-400 -200 0

I I

, ,, i

,o" /

I i

!

43

Figure 16. Continued. (e) R_=,_,,(Az, y); (f) R,.,v_,(Ax, y ).



44

I

(o)

0

I ! I

--4OO

I I

r

j J

f r
i i

f /
1

t •
s"4

J

o J

-200 0 200 400

Figure 16. Concluded. (g) R_.,,. (Az, y).



45

1"0[ (a)

.---.;."'.

Vl/Uc _'_"''"

.5

0
0 .5 1.0

yw/5

Vi +

15

10

0

2-10-1

(b)

,hhhl _ , , , I ,,,,I,,,,t,.,L.d,hhhl , , . , I ,,,,h,,,h.,i,,,J,hh|,l , , . I I

10 0 101 10 2

y4"

Figure 17. Propagation velocities for the rapid and slow pressure perturbations across

the channel (a) in global coordinate and (b) in wall coordinate: _, mean; _, V,,;

.... , y,.;---, v_.; ........ ,v_.



46

y16

y/S

I
(a)

0

--I i

1
(b)

0

--1 I

| | I • ,)-,

I I J '

-400 -200 0 20O 4OO

Figure 18. Two-point correlations at nonzero time delay (At + = 18) in the (x, y)-plane

for y+ = 0: (a) Rp_p,(Ax, y); (b) Rp.po(Ax, y).



Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
nil ii

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,

gathenng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management end BudgeL Paperwork Reduction Project {0704-0188), Washinglon, DC 20503.

1. AGENCY USE ONLY (Laave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1992 Technical Memorandum
1 71r

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Propagation Velocity and Space-Time Correlation of Perturbations in
Turbulent Channel Flow

i

6. AUTHOR(S)

John Kim and Fazle Hussain (University of Houston,

Houston, TX 77204)
_1 RIEI] I nl II F_]

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, I3<7 20546-0001

505-60

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-92088

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-103932

11. SUPPLEMENTARYNOTES

PointofContact: John Kim, Ames Research Center, MS 202A-l, Moffe_Field, CA94035-1000;
(415)604-5867 orFTS 464-5867

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

A database obtained from direct numerical simulation of a turbulent channel flow is analyzed to extract the

propagation velocity V of velocity, vorticity and pressure fluctuations from their space-time correlations. A

surprising result is that V is approximately the same as the local mean velocity for most of the channel, except for

the near-wall region. For y* < 15, V is virtually constant, implying that perturbations of all flow variables propagate

like waves near the wall. In this region V is 55% of the centerline velocity Uc for velocity and vorticity perturbations

and 75% of Uc for pressure perturbations. Scale-dependence of V is also examined by analyzing the bandpass-

f'dtered flow fields. This paper contains comprehensive documentation the propagation velocities and space-time

correlation data, which should prove useful in the evaluation of Taylor's hypothesis. An attempt has been made to

explain some of the data in terms of our current understanding of organized structures, although not all of the data

can be explained this way.

14. SUBJECT TERMS

Turbulence, Propagation velocity, Numerical simulation

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

46
16, PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LII_IITATION OF ABSTRACT

OF ABSTRACT

StanOard Form 298 (Rev. 2-89)
Prescribed by ANSI StU Z30-18




